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Is it possible to increase Tc by constructing cuprate heterostructures, which combine the high pairing energy
of underdoped layers with the large carrier density of proximate overdoped layers? We investigate this question
within a model bilayer system using an effective theory of the doped Mott insulator. Interestingly, the question
hinges on the fundamental nature of the superconducting state in the underdoped regime. Within a plain slave
boson mean-field theory, there is absolutely no enhancement of Tc. However, we do get a substantial enhance-
ment for moderate interlayer tunneling when we use an effective low energy theory of the bilayer in which the
effective quasiparticle charge in the underdoped regime is taken as an independent phenomenological param-
eter. We study the Tc enhancement as a function of the doping level and the interlayer tunneling, and discuss
possible connections to recent experiments by Yuli et al. �Phys. Rev. Lett. 101, 057005 �2008��. Finally, we
predict a unique paramagnetic reduction in the zero-temperature phase stiffness of coupled layers, which
depends on the difference in the current carried by quasiparticles on the two types of layers as �J1−J2�2.
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I. INTRODUCTION

There are strong indications1–4 that the superconducting
transition temperature of underdoped cuprate materials is
limited only by their small superfluid density while the pair-
ing scale is very high. This understanding has raised the hope
that Tc can yet be made substantially higher by clever design
of materials. In particular, a number of recent theoretical5–7

and experimental8–10 studies explored the possible benefit in
heterostructured materials combining metallic layers with
layers of underdoped cuprate material. The basic idea is
simple; underdoped layers contribute a strong microscopic
pairing interaction, whereas metallic layers provide a high
density of charge carriers. But it could also go the other way.
Namely, the metal destroys pairing in the underdoped layer
without contributing much of its charge carriers. The ques-
tion how much, if at all, such systems can actually enhance
Tc may require deeper knowledge of the nature of the super-
conducting state in the cuprates. Of particular importance in
this respect is better understanding of the mechanisms that
reduce the superfluid density with temperature and with
proximity to the Mott insulating state.

In this paper we investigate the problem of Tc enhance-
ment within a bilayer model using an effective description of
the doped Mott insulator. The model captures an interesting
competition of effects, which we expect is rather general to
cuprate heterostructures and possibly inhomogeneous real-
izations of these materials. In particular we discuss possible
implications of our results to recent experiments in
La2−xSrxCuO4 �LSCO� bilayers.10 We argue that experiments
with heterostructures may shed new light on fundamental
questions concerning the nature of superconductivity in cu-
prates.

The essential physics that determines Tc of the bilayer is
most clearly illustrated within the effective low energy
theory of d-wave superconductors.11–13 The superfluid stiff-
ness follows a linear temperature dependence at low tem-
peratures �s�T���s�0�−BT due to thermal excitation of qua-
siparticles at the Dirac nodes. The slope B is inversely

proportional to the magnitude of the d-wave gap. This ex-
pression implies a crude estimate of Tc in a two-dimensional
system Tc��s�0� / �B+2 /��, which is the point where the
criterion for a Kosterlitz-Thouless transition is satisfied
��s�Tc�=2Tc /��. Crucially, the transition temperature de-
pends on the zero-temperature stiffness but also on the qua-
siparticle gap via the slope B.

Coupling a layer of d-wave superconductor to a normal
layer produces a d-wave proximity gap, which protects a
superflow of electrons in the normal layer. Figure 1 is an
illustration of the resulting low energy spectrum of the bi-
layer system. While the carrier density of the underdoped
layer is small �it is proportional to the hole doping of the
Mott insulator�, the carrier density of the normal layer is
much larger and is of the order of the total electron density.
Consequently, the zero-temperature superfluid stiffness is
huge, consisting of the contributions from the two layers and
is clearly dominated by the carrier density of the normal
layer �s�T=0��ns1 /m1

�+ns2 /m2
�. On the other hand the re-

duction in the stiffness with temperature is now much steeper
than for a single layer. This is because it is dominated by
thermal excitation of quasiparticles at the nodes of the
d-wave proximity gap, which is smaller than the pairing gap

ky

kx

FIG. 1. �Color online� Illustration of the two-dimensional low
energy dispersion of a bilayer consisting of a d-wave superconduct-
ing layer and a nominally metallic layer. The four outer �red� sur-
faces mark the original Dirac cones of the superconducting layer.
The inner �blue� surfaces are the Dirac cones induced by the prox-
imity effect on the metallic layer. The closed �blue� curve denotes
the original Fermi surface of that layer.
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in the underdoped layer. At weak coupling between the lay-
ers, the proximity gap is given by �k

prox��k�t̃� /E1�2, where
t̃� is an effective interlayer tunneling and E1 is a larger en-
ergy scale determined by the mismatch of the two Fermi
surfaces. The resulting linear slope of the stiffness with tem-
perature is given to leading order in the small parameter
t̃� /E1 by B2��2 ln 2 /���vF2 /v���E1 / t̃��2. Here vF2 is the
Fermi velocity of the normal layer and v� the slope of the
pairing gap of the underdoped layer at the node. This should
be compared with the smaller slope in a pure underdoped
material B1=�2�2 ln 2 /���vF1 /v��, where � is the effective
electric charge carried by a current of quasiparticles. Thus
the question of Tc enhancement in the bilayer hinges on the
competition between the increased zero-temperature stiffness
and reduced quasiparticle gap compared to the pure under-
doped material.

To understand the full dependence of Tc enhancement on
doping level and bilayer coupling, one must go beyond these
leading-order estimates. To do this we draw on the basic
framework of slave boson mean-field theory �SBMFT�.14–16

We also derive an effective semiphenomenological theory of
the bilayer, along the lines of Ref. 13, which keeps the spirit
of SBMFT while avoiding some of its peculiarities. The re-
sulting phase diagram shows significant enhancement of Tc
for moderate interlayer tunneling over a wide range of dop-
ing levels. As a function of interlayer tunneling, Tc increases
at first but reaches a maximum at an optimal value of t�. The
main factor in setting the optimal coupling is the antiprox-
imity effect on the pairing gap of the underdoped layer.

We find another somewhat more subtle antiproximity ef-
fect, which affects the zero-temperature superfluid stiffness.
In addition to the usual diamagnetic response, there is a
paramagnetic correction at zero temperature due to mixing
of quasiparticle wave functions between the two layers. Ac-
cordingly, the zero-temperature superfluid stiffness is smaller
than the independent contributions of the two layers,
ns1 /m1

�+ns2 /m2
�, by a term proportional to �J1−J2�2, where

Jl=�lvFl is the current carried by a quasiparticle located on
layer l. We argue that measurements of this effect can lend
insights into a long-standing problem concerning the so-
called quasiparticle charge,12,17 or current carried by a qua-
siparticle in the cuprates.

The rest of this paper is organized as follows. In Sec. II
we define the microscopic model which serves as the basis
for our theoretical analysis. In Sec. III we use self-consistent
slave boson mean-field theory to obtain the temperature-
dependent phase stiffness and a phase diagram of the bilayer
model. In Sec. IV we derive a low energy effective theory of
response to an external vector potential starting from the
slave boson formulation. We then generalize the low energy
theory to include renormalized parameters for the zero-
temperature superfluid stiffness and the effective quasiparti-
cle charge. In Sec. IV C we use the semiphenomenological
theory to predict Tc enhancement in a putative LSCO bilayer
composite system. In Sec. IV D we use the effective theory
to derive the paramagnetic correction to the zero-temperature
stiffness. Finally in Sec. V we summarize our main conclu-
sions and discuss possible implications to recent experi-
ments.

II. MODEL

Our starting point for theoretical investigation is the fol-
lowing model of a bilayer system:

H = H1 + H2 + H�,

H1 = − t1 �
�ij	�

P�ci�
† cj� + H.c.�P − ��0 + ���

i�

ci�
† ci�

+ J�
�ij	


Si · S j −
1

4
ninj� + . . . ,

H2 = − t2 �
�ij	−�

�di�
† dj� + H.c.� − ��

i

di�
† di�,

H� = − t��
i�

�ci�
† di� + H.c.� . �1�

Here, the normal �highly overdoped� layer is modeled by the
Hamiltonian H2 of noninteracting Fermions di�

† on the square
lattice. The underdoped layer on the other hand is modeled
by the effective t-J Hamiltonian H1, which takes into account
the proximity of the Mott insulating state. P is the projection
on the low energy subspace with no doubly occupied sites,
and the dots represent possible additional terms. The energy
offset �0 is the single layer chemical potential that would set
the correct hole doping of the underdoped layer in absence of
interlayer coupling H�. When the two layers are coupled by
H� they of course must share a common chemical potential
�, which in general leads to charge redistribution between
the layers.

III. MEAN-FIELD PHASE DIAGRAM

In this section we obtain the phase diagram of the bilayer
model using the SBMFT.14–16 This is the simplest theory that
gives a BCS-like superconductor with a large Fermi surface
but with low superfluid density, which scales as the hole
doping. Thus for a single layer Tc is controlled by the zero-
temperature superfluid stiffness rather than by the pairing
gap.

A. Slave boson mean-field theory for a bilayer

Before presenting the bilayer calculation, let us briefly
review the standard slave boson approach for a single under-
doped layer. The electron creation operator is represented as
a composite of a fermionic spinon and a bosonic holon op-
erator ci�

† =bif i�
† . The redundancy of representation is re-

moved by the local constraint bi
†bi+��f i�

† f i�=1, which can
be implemented exactly by a U�1� gauge field. The core
approximation of the mean-field solution is that, at least in
the superconducting phase, both the holon and the gauge
field are condensed. This allows replacing of the operator bi

by the number �2x / �1+x��1/2�� and implementing the
constraint only on the average.14 At this stage the approxi-
mate Hamiltonian H��x� is written in terms of the fermion
spinon operators only, and acts in an unrestricted Hilbert
space; however it is still quartic. The second approximation
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consists of a standard mean-field solution of H�, whereby
one seeks the best quadratic approximation to it of the form

H0 = − t1��
�ij	

�eieAij f i
†f j + H.c.� − �0�

i

f i
†f i

+ �
k�

��kf↑,k
† f↓,−k

† + H.c.� − �
k�

	kf�k
† f�k, �2�

where �k=��cos kx−cos ky� and 	k=	�cos kx+cos ky�. Here
we introduced a coupling to an external vector potential
through the phases eAij, which will later facilitate calculation
of the superfluid density. Note that the electromagnetic vec-
tor potential couples only to the charged holon field. Con-
densation of the holon leads to effective coupling to the fer-
mion field in the kinetic-energy term. The parameters � and
	 are determined using a general thermodynamic variational
principle by minimization of

F0 + �H� − H0	0, �3�

F0 is the free energy implied by the trial Hamiltonian H0, and
� 	0 denotes a thermal average generated by H0. The chemi-
cal potential �0 is determined by resolution of the average
constraint equation: ���f�i

† f�i	+x=1.
We now move on to include the interlayer coupling. At

this point charge can be redistributed between the layers,
changing the doping levels of the two layers from x and y in
absence of the coupling to x̃ and ỹ. The quadratic interlayer
tunneling Hamiltonian is given by

H�0 = − t�
�̃�

i�

�f i�
† di� + H.c.� , �4�

where �̃=2x̃ / �1+ x̃�. The quadratic bilayer �variational�
Hamiltonian in momentum space is then

HMF = �
k

�
1k + 
2k + �k
†hk�k� , �5�

where �k
† = �fk↑

† , f−k↓ ,dk↑
† ,d−k↓� and

hk =�

1k �k t̃� 0

�k − 
1,−k 0 − t̃�

t̃� 0 
2k 0

0 − t̃� 0 − 
2,−k

� , �6�

with t̃�� t�
�̃. In the absence of external fields


1k = − �2�̃t1 + 	��cos kx + cos ky� − � ,


2k = − 2t2�cos kx + cos ky� − � + �0,

�k = ��cos kx − cos ky� . �7�

The parameters � and 	 can be determined again by solving
the variational equations, supplemented by the two number
equations for the additional unknowns x̃ and �:

�nf	 = 1 − x̃ ,

�nd	 = 1 − ỹ = 1 − y + �x̃ − x� . �8�

Clearly, a proximity gap will be induced in the normal layer
due to the coupling with the underdoped superconducting
layer. The charge carriers in the second layer will then con-
tribute to the superfluid density.

B. Superfluid density and Tc

We shall obtain the critical temperature of the bilayer by
computing the temperature-dependent superfluid stiffness

�s�T� = � 1

�

�2F

�A2�
A=0

. �9�

Here F is the free energy, A is an externally applied trans-
verse vector potential, and � is the volume of the system.
The critical temperature is then given by the condition for a
Kosterlitz-Thouless transition �s�Tc�= �2 /��Tc.

The dominant contribution to the reduction in superfluid
stiffness at low temperatures in a d-wave superconductor is
the paramagnetic response due to thermally excited quasipar-
ticles in the gap nodes.11 This leads to a linear decrease in �s
with T. Because the paramagnetic response amounts to a
current-current correlator, the slope d�s /dT is proportional to
the square of the effective electric charge carried by a current
of quasiparticles. Here we encounter a possible pitfall of the
mean-field theory. Within plain SBMFT, the quasiparticle
charge is proportional to the doping x. However, experiments
seem to point to a fairly doping independent value of this
parameter.18,19 The experimental results can be reproduced
by an effective theory, which maintains the spirit of SBMFT
but assigns a phenomenological value to the quasiparticle
charge.13

In our analysis of the two layer system we consider the
bare SBMFT as well as a theory with a phenomenological
quasiparticle charge renormalization. The main result of the
mean-field calculation is a phase diagram of the bilayer het-
erostructure.

Figure 2�a� displays Tc as a function of the doping x com-
puted using the bare slave boson theory for various values of
the interlayer tunneling t�. No enhancement of Tc relative to
a pair of identical layers is found for the relevant range of
parameters 0.2J0.7 and 0 t�1.

In marked contrast, we do find a significantly enhanced Tc
in a modified SBMFT which allows for a phenomenological
quasiparticle charge renormalization independent of the dop-
ing. To compute the second-order response �Eq. �9�� to an
external vector potential A, the mean-field Hamiltonian �2� is
expanded to second order in Aij

H�A� = H�0� − �
�ij	

jijAij +
1

2�
�ij	

kijAij
2 , �10�

with the paramagnetic current operator jij = it1�e���f i�
† f j�

− f j�
† f i�� and the average kinetic energy per bond

kij =−t1�e2���f i�
† f j�+ f j�

† f i��. In the plain SBMFT approach
the charge in the current operator jij is renormalized by a
factor ��x. It is this renormalization that leads to a strong
doping dependence of the slope d�s /dT at low
temperatures,11 which disagrees with experiments.18,19 As a
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possible cure of this artifact within the microscopic theory,
we replace the factor � in jij by a doping independent num-
ber �, which in principle should be determined experimen-
tally. This is equivalent to introducing an effective quasipar-
ticle charge of magnitude �e to all physical properties
involving the quasiparticle current, as suggested in Refs. 11
and 13. In our model we apply this renormalization only to
the underdoped layer since the normal layer is approximated
simply by noninteracting fermions. We choose a value of �
�0.5, which reproduces the dome-shaped Tc�x� phase dia-
gram with Tc / t1 having the right order of magnitude. For this
renormalized value we obtain enhancement of Tc of the bi-
layer compared to two identical underdoped layers with the
same �.

The result of this calculation is presented in Fig. 2�b�. The
optimal doping level of the underdoped layer of the hetero-
structure is seen to be around x=0.1, which is well below the
optimal doping of the single layer and consistent with the
result of recent experiments.10

The enhancement of Tc stems from the combination of a
large carrier number donated by the normal layer and a large
pairing gap induced by the proximate underdoped layer. Be-
cause the proximity gap is smaller than the original pairing
gap, the reduction in stiffness with temperature is also
steeper in the heterostructure. However, for the modified SB-
MFT with renormalized quasiparticle charge, the increase in
slope d�s /dT is not large enough to offset the enhanced zero-
temperature superfluid stiffness. By comparison, in the plain
SBMFT the slope of stiffness versus temperature for the pure
underdoped material is much smaller because of the small
quasiparticle charge. The increase in slope d�s /dT upon go-
ing from a pure underdoped material to a heterostructure is
concomitantly more extreme. For this reason we see an en-
hancement of Tc only for SBMFT with renormalized quasi-
particle charge.

We note that the computation of superfluid stiffness �Eq.
�9�� with both plain and modified SBMFTs is carried out
fully self-consistently. Thus it captures nonlinear contribu-
tions to the temperature dependence of the superfluid stiff-
ness �but of course not contributions from phase fluctua-
tions�.

The degree of Tc enhancement as a function of the inter-
layer tunneling is plotted in Fig. 3. We note that the minimal
interlayer tunneling required to obtain such an enhancement
�t�� t /4� appears rather too large to serve as straightforward
model of the bilayer experiment of Yuli et al.10 This issue
will be discussed further in Sec. IV C. Moving to still larger
t� we observe a maximal enhancement of Tc at t��0.5t for
which the enhancement may be as large as 40%. The optimal
value of t� occurs where the proximity gap becomes of order
of the superconducting gap �see inset of Fig. 3�. At this point
the superconducting gap cannot increase any further and the
antiproximity effect of the normal layer on the superconduct-
ing one takes over.

(b)(a)

FIG. 2. �Color online� Phase diagram of the bilayer system from microscopic theory. The critical temperature Tc �normalized by its
maximal value for two identical underdoped layers, Tc,0

max� vs doping of the underdoped layer. The doping level of the metallic layer is y
=0.35. The dashed line is the result of two identical underdoped layers. �a� �Bare� SBMFT calculation. No enhancement of Tc. �b� SBMFT
with renormalized quasiparticle charge of �1=0.5 in the underdoped layer. Maximal Tc enhanced by �40% in the heterostructure. Optimal
doping shifted down, consistent with experiment of Yuli et al. �Ref. 10�.

FIG. 3. �Color online� Optimal interlayer tunneling. The critical
temperature Tc is plotted vs the interlayer coupling t� / t �t= t1= t2�.
Different curves correspond to different doping levels of the under-
doped layer and all curves are normalized by the critical tempera-
ture of two underdoped layers of the same doping level, Tc,0�x�. The
doping of the metallic layer is y=0.35. Inset: the self-consistent gap
� and the proximity gap �prox as calculated from the bilayer energy
spectrum, plotted vs the interlayer tunneling t� / t for doping x
=0.11. This suggests that the optimal value of t� is determined by
the point where the antiproximity effect on the gap of the under-
doped layer overtakes the proximity gap in the normal layer.
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Before closing this section we point out another interest-
ing effect in the response of the bilayer heterostructure as
compared to the single layer �or a pair of identical layers�. In
the single layer mean-field theory the paramagnetic response
appears only due to quasiparticles at finite temperatures,
whereas the zero-temperature superfluid stiffness is indepen-
dent of the effective quasiparticle charge. It is not so in the
coupled bilayer heterostructure. In this case a quasiparticle
carries a different current depending on whether it resides on
the top or bottom layer. This allows redistribution of quasi-
particles in the ground state in the presence of current and
leads to a zero-temperature paramagnetic contribution to the
superfluid stiffness.

We will show in Sec. IV D that the reduction in the stiff-
ness at zero temperature is proportional to ��1vF1−�2vF2�2,
where �l and vFl are the effective quasiparticle charge and
the Fermi velocity in layer l. Note that �lvFl=Jl is the current
carried by a quasiparticle in layer l. Figure 4 shows the zero-
temperature stiffness of the bilayer within the self-consistent
mean-field calculation as a function of the quasiparticle
charge renormalization. We see indeed that the correction is
negative and quadratic in J1−J2.

IV. EFFECTIVE LOW ENERGY THEORY

To clarify the mechanisms of Tc enhancement and facili-
tate generalizations that are less dependent on a particular
microscopic model, it is worthwhile to derive a low energy
effective theory for the bilayer system. This will be done
perturbatively in the interlayer coupling in Sec. IV A. We
shall also derive the effective coupling of the external field to
the low energy Hamiltonian for the sake of computing the
superfluid stiffness. The low energy theory, with parameters
extracted from bulk samples, will then be used to construct a
phase diagram of the bilayer system for given values of the
interlayer coupling.

A. Quasiparticle spectrum

In the absence of interlayer coupling, the lower diagonal
block in the microscopic Hamiltonian �6� describes gapless
particle and hole excitations near the Fermi surface of the
metallic layer �
k

�2��0�. The primary effect of the coupling is
to open a proximity gap in the metallic layer. This is captured
nicely by the low energy effective Hamiltonian derived by
second-order degenerate perturbation theory. To this end it is
convenient to rewrite Hamiltonian �6� in terms of its 2�2
blocks

hk = �h1�k� V

V† h2�k�
� , �11�

and treat V as a perturbation. We note that, since the effective
interlayer tunneling t̃� is proportional to x, at sufficiently
low doping levels a perturbative treatment may be justified
even if the bare tunneling t� is not very small.

The low energy physics is dominated by excitations near
the Fermi surface of the metallic layer �layer 2� and near the
nodal points of the superconducting layer �layer 1�. The ef-
fective Hamiltonian for the metallic layer near its Fermi sur-
face �i.e., 
k

�2��−
k
�2�� is obtained in a standard way20

h2,k
eff �E� = h2,k + V†�E − h1,k�−1V .

Note that the effective Hamiltonian is energy dependent, and
therefore not really a Hamiltonian. This is because it is de-
fined through the resolvent operator projected to the lower
right block

G22�E� = P2�E − h�−1P2 � �E − h2
eff�E��−1. �12�

The energy dependence will be important below when we
consider response to external fields. However, for now, since
we are only interested in the low energy spectrum, compared
to the separation between blocks, we may neglect the energy
dependence to leading order in degenerate perturbation
theory and obtain

h2,k
eff = �
2,k − �t̃�/E1k�2
1,k �t̃�/E1k�2�k

�t̃�/E1k�2�k − 
2,−k + �t̃�/E1k�2
1,−k
� .

�13�

Here E1k=
1k
2 +�k

2 is the energy of a quasiparticle of the
superconducting layer at a wave vector k near the Fermi
surface of the normal layer. We see that a small t� leads to a
proximity gap �k

prox= �t̃� /E1k�2�k. The proximity gap inher-
its the d-wave symmetry from the pairing gap �k of the
superconducting layer but is suppressed in magnitude. An
important observation is that the degree to which the prox-
imity gap is suppressed is highly sensitive to the Fermi-
surface matching between the two layers. For highly
matched Fermi surfaces the energy denominator E1k is very
small compared to the full bandwidth 4t1. In this way it is
possible to gain significant enhancement in Tc with relatively
small interlayer tunneling t�. It is interesting to note that
between a highly overdoped layer with hole concentration
x�0.35 and an underdoped layer, as seen in angle-resolved
photoemission spectroscopy �ARPES� experiments, the
Fermi surface matching is impressively good.21 This is not so

FIG. 4. �Color online� Paramagnetic reduction in the zero-
temperature stiffness. �s�T=0� of the bilayer system �doping levels
x=0.11 and y=0.35� is plotted against �J1−J2�2 / t2, where t= t1= t2

is the bare in layer tunneling and Jl=�lvFl are the quasiparticle
currents of the two layers. Here vFl are the Fermi velocities at the
nodes in the respective layers. We used the quasiparticle charge
�2=1 for the normal layer and varied �1 of the underdoped layer.
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in the case of gold deposited on the underdoped film, for
which no enhancement of Tc was found in Ref. 10.

In addition to Eq. �13�, the complete low energy Hamil-
tonian also includes the Dirac quasiparticles of the original
superconducting layer, which are now slightly renormalized
by degenerate perturbation theory �near E1k�−E1k�,

h1,k
eff = �
1,k − t̃�

2 /
2k �k

�k − 
1,−k + t̃�
2 /
2k

� .

The low energy effective theory captures correctly prop-
erties related to quasiparticle excitations at low temperature.
To get a full picture of zero-temperature properties we
should include perturbative corrections to all negative-energy
states, including those far below the underlying Fermi sur-
faces of the two layers. Such corrections will be discussed in
Sec. IV D, where we analyze a unique paramagnetic contri-
bution to the stiffness at zero temperature.

B. Response to transverse vector potential

To compute the superfluid stiffness within the low energy
effective theory using formula �9�, we need to derive the
renormalized coupling to an external vector potential in the
effective Hamiltonian. This is accomplished by carrying out
the renormalization scheme outlined above in the presence of
a field while keeping terms up to second order in A through-
out. For simplicity let us take A=Ax̂.

The coupling of the microscopic Hamiltonian �6� to the
vector potential, up to second order in A, is given by

hl�k,A� = hl�k,0� − Jl · A +
1

2
Kl�k�A2, �14�

where the index l=1,2 refers to the two layers, and Kl�k�
=�kx

2 
l�3�
l��3 are the kinetic-energy operators due to mo-
tion along the axis defined by A �in our case the x̂ axis�. Jl
=�lvFl�0 is the electric current operator on the layer l, with
�l denoting the quasiparticle charge on that layer and vFl as
the Fermi velocity. The off-diagonal block V of the Hamil-
tonian does not couple to the electromagnetic field.

Now following the same steps as above we can eliminate
the coupling between the blocks and obtain an effective
Hamiltonian valid near the Fermi surface of the metallic
layer

h2
eff�E,A� = h2 − J2A + V†
E − h1 + J1 · A −

1

2
K1A2�−1

V ,

�15�

where we have dropped the argument k for notational sim-
plicity. We note that the energy E should be understood as a
solution to the equation det�E−h2

eff�E��=0 for the poles of
Eq. �12�. Therefore the energies implicitly depend on the
external field A. To zeroth order in t̃� /E1 we have E�A�
=E�0�−J2 ·A+ 1

2sgn�E�0��
2�A
2. We must keep the A depen-

dence since we are interested in the response to the external
field. However we may still neglect the constant E�0�, which
is much smaller than E1 in this regime. In this way we obtain
the effective Hamiltonian

h2
eff�A� = h2 − J2 · A +

1

2
K2A2 − V†
h1 − �J1 − J2� · A

+
1

2
�sgn�E�
2��0 − 
1��3�A2�−1

V

= h2 − V†h1
−1V − J2 · A +

1

2
K2A2 − � t̃�

E1
�2

�J1 − J2� · A

− � t̃�

E1
�2�h1

−1�J1 − J2�2 −
1

2
�sgn�E�
2� − 
1��3��A2.

�16�

This is still energy dependent because of the term sgn�E�.
However, of the two terms quadratic in A in the last line, the
first is larger by a factor �4t1 /E1�� /�k �see Appendix for
detailed explanation�, where �k is the mismatch between the
Fermi surfaces of the two layers at the nodes. In other words
the first term is strongly enhanced by good Fermi-surface
matching, which is indeed observed in ARPES experiments
done with samples of varying doping levels.21 Specifically,
for a bilayer with underdoped layer at x=0.07–0.15 and
overdoped layer doping y=0.35, the estimated ratio is
t1 /E1�5. We therefore neglect the energy dependent term
and obtain an effective Hamiltonian

h2
eff�A� = h2,k

eff − J2
eff · A +

1

2
K2

effA2, �17�

with

J2
eff = J2 + � t̃�

E1
�2

�J1 − J2� ,

K2
eff = K2 − 2� t̃�

E1
�2


1�3 + ��1

E1
2 �J1 − J2�2. �18�

The effective Hamiltonian h1
eff�A� valid near the Dirac

nodes of the underdoped layer is derived in the same way,

h1
eff�A� = h1,k

eff − J1
eff · A +

1

2
K1

effA2, �19�

where

J1
eff = J1 + � t̃�


2
�2

�J2 − J1� ,

K1
eff = K1 − 2

t̃�
2


2
3 �3�J1 − J2�2. �20�

The phase stiffness we wish to compute can be divided
into two parts. First is the zero-temperature superfluid stiff-
ness, which to leading order in the interlayer coupling is
given simply by the sum of contributions from the two lay-
ers. Second, is the linear reduction in the stiffness with the
temperature. Because this reduction is induced by thermal
excitation of low energy quasiparticles at the gap nodes, it
can be computed using the effective low energy theory. This
will be done in the next subsection. We note that there are
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also zero-temperature corrections to the stiffness due to cou-
pling between the layers. These are somewhat more subtle
and will be considered in Sec. IV D.

C. Temperature-dependent phase stiffness

In the low energy effective Hamiltonian we have achieved
effective decoupling of the two layers. Therefore, the contri-
butions of the stiffness due to each layer, within this theory,
can be added separately and they must each be non-negative

�s�T� = max��1,0� + max��2,0� . �21�

At zeroth order in the interlayer coupling, the zero-
temperature stiffness is simply the sum of the contributions
of the independent layers, �l�0�=nsl /ml

�. The leading tem-
perature dependence of �l is a linear reduction in temperature
due to a paramagnetic contribution from thermally excited
quasiparticles in the nodes of h1

eff and h2
eff. This contribution

can be calculated exactly as in Ref. 11 using the effective
Dirac Hamiltonians hl

eff and the respective quasiparticle cur-
rents Jl

eff:

��l,para = −
8

T
�
k

�Jl
eff�2nF�k��1 − nF�k�� . �22�

We carry out the integration using the density of states of the
respective layers,

�1�E� =
E

2�vF1v�

,

�2�E� =
E

2�ṽF2ṽ�

, �23�

where ṽ��v�t̃�
2 /E1

2 and ṽF2=vF2−vF1t̃�
2 /E1

2, the proximity-
induced gap and Fermi velocities near the Fermi surface of
the metallic layer. Taking Jl

eff from Eqs. �18� and �20� we
obtain the low-temperature contributions to the phase stiff-
ness due to each of the layers

�1 = �1�0� − T
2 ln 2

�
�1

2vF1

v�

+ O� t̃�
2


2
2� ,

�2 = �2�0� − T
2 ln 2

�

�2

2vF2

v�
�E1

2

t̃�
2

− 2� +
vF1

v�

��2
2 + 2�1�2��

+ O� t̃�
2

E1
2� . �24�

Clearly the dominant term in the temperature dependence
of �s is due to thermal excitation of quasiparticles in the
proximity-induced Dirac cones of the metal �layer 2�. This
term scales as vF2 / ṽ�= �vF2 /v���E1 / t̃�

2 �. Terms of order of
one in the dimensionless interlayer tunneling t̃� /E1 are due
to excitations in the original Dirac cones and to quasiparticle
mixing between the layers.

Our next step is to estimate22 Tc of the bilayer using for-
mulas �21� and �24�. These formulas are expressed mostly in
terms of phenomenological parameters, which may in prin-

ciple be extracted from experiments with bulk samples.
We estimated the needed parameters using the following

information: �i� the zero-temperature stiffness of the under-
doped layer �1�0� was taken from data interpolation of pen-
etration depth measurements.23 �ii� In the underdoped regime
d�1 /dT�−1, almost independent of doping.19 �iii� v� is de-
termined from the maximal gap extracted from the leading
edge shift in ARPES �Ref. 24� by assuming a pure d-wave
gap function �k=��cos kx−cos ky�. �iv� The Fermi velocity
of the underdoped material is taken from ARPES
measurements,21,25 which give �1.8 eV A, almost indepen-
dent of the doping within the underdoped regime. �v� The
effective quasiparticle charge in the underdoped regime,
�1�x�= ��� /2 ln 2��v� /vF1�d�1 /dT�1/2, is then fully deter-
mined by �ii�–�iv�. �vi� The zero-temperature stiffness of the
metallic layer is estimated as the average kinetic energy per
bond, �2�0�= t2�1−y�, where we take y=0.35. The hopping
t2�300 meV is taken from the band structure determined by
ARPES measurements of LSCO samples.21 The ratio of the
two Fermi velocities is seen to be vF2 /vF1�1.5.

The one parameter that cannot be extracted from such
experiments is the dimensionless interlayer coupling t̃� /E1.
We remind the reader that E1�k� is the energy of a quasipar-
ticle of the superconducting layer at the wave vector k near
the Fermi surface of the metallic layer. It therefore depends
crucially on the distance �k between the two Fermi surfaces
and can be approximated as E1��kvF1. In principle �k may
be extracted from ARPES experiments, such as Ref. 21. For
underdoped LSCO layer with hole concentration between x
=0.07 to x=0.15, matched with a highly overdoped layer x
=0.35, we extract E1�60 meV� t. It is therefore possible,
in principle, to obtain a sizable proximity effect, even for
interlayer tunneling substantially smaller than t as long as t�

is not much smaller than E1.
Figure 5 shows the phase diagram of LSCO bilayers esti-

mated using the phenomenological theory described in this
section. In the underdoped side Tc is controlled by the tem-

FIG. 5. �Color online� Phase diagram of bilayer LSCO from the
phenomenological theory. Plots of the critical temperature for a bi-
layer with different interlayer tunneling t� / t computed using the
phenomenological approach of Sec. IV C �solid red curves�. This is
compared to the measured critical temperature in bulk LSCO �black
circles� taken from Ref. 23. The dashed line is a linear interpolation
of data for ��x� /2 �antinodal gap� �Ref. 24�, taken as an estimate
for the mean-field critical temperature.

ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION… PHYSICAL REVIEW B 79, 174509 �2009�

174509-7



perature dependence of the superfluid stiffness of the bilayer
as given by Eqs. �21� and �24�. The value of Tc is determined
by the criterion �s�Tc�= �2 /��Tc for a Kosterlitz-Thouless
transition in the two-dimensional interface layer. The result
for Tc�x� of the double layer systems for two values of the
interlayer coupling is given by the solid lines in the figure.26

These lines are cut off by the dashed curve which is the
estimate of Tc that is more appropriate to the overdoped side
of the phase diagram. There, the pairing gap becomes
smaller than the energy scale set by the superfluid stiffness
and therefore the gap sets the scale for Tc, which can be
estimated by the BCS relation TC���x� /2. The value of the
gap as a function of doping is taken from an interpolation of
ARPES data.24 For comparison we also show the transition
temperature measured in bulk LSCO �Ref. 23� �black
circles�.

For interlayer tunneling t�� t /5 we see a significant en-
hancement of Tc compared to the bulk transition temperature.
This is one of our main results. Furthermore the optimal
doping level is shifted down compared to the bulk optimal
doping, in qualitative agreement with experiment.10 We point
out that for interlayer tunneling t�= t /5 the perturbative pa-
rameter is �t̃� /E1�2�0.4, justifying the expansion in Eq.
�24�. However, we note again that the interlayer tunneling
required to achieve the enhancement of Tc is rather large to
directly explain this experiment.27,28

One possible explanation of the experimental result, in
line with our analysis, is that in reality the interface layers
share dopants, such that each layer is an inhomogeneous
mixture of underdoped and overdoped puddles. This is a
natural scenario in the samples of Ref. 10, in which the in-
terface is not atomically sharp and it was shown to consist of
facets of the two material components. However inhomoge-
neous doping of the interface is plausible even in the atomi-
cally sharp interfaces of Ref. 9. Indeed these authors mapped
the doped hole distribution along the c axis using resonant
x-ray scattering and found that the interface doping is ap-
proximately the average of the nominal doping levels of the
two material components.29 This was explained by a simple
theory of electrostatic screening. The hole distribution within
the interface plane was not mapped but it is highly likely to
be inhomogeneous given the random dopant distribution.

The essential competition of effects that determine Tc in a
inhomogeneous layer is expected to be the same as discussed
above. The large superfluid density donated by the proximity
gapped overdoped regions counters the steep reduction in
stiffness with temperature due to the smallness of the prox-
imity gap. Most importantly, now that the two “phases” are
intertwined in the same layer, the effective coupling between
them can be much larger. Our analysis of two homogeneous
layers with substantial coupling between them could then be
viewed as a crude effective description of the inhomoge-
neous system.

D. Zero-temperature paramagnetic response

So far we were concerned with the variation in the stiff-
ness with temperature. In this section we point out an inter-
esting zero-temperature effect of the bilayer coupling on the

superfluid stiffness. Specifically, the superfluid stiffness of
the coupled double layer system is smaller than the summed
stiffness of the individual layers.

One way to see this effect is by inspection of the effective
Hamiltonian of the double layer, as given by Eqs. �17� and
�19�. In the effective Hamiltonian of each of the layers the
quadratic coupling to a vector potential is renormalized
down, at second order in the interlayer tunneling, by a factor
proportional to ��1vF1−�2vF2�2. This is not the full contri-
bution to the zero-temperature stiffness, which consists of
the response of the ground-state energy to the vector poten-
tial. The ground-state energy, in turn, involves a sum of all
the negative-energy solutions of Eq. �6�. It is therefore not
enough to compute the contribution from the low energy
excitations, encoded by the effective Hamiltonians �17� and
�19�. As opposed to the calculation of the temperature depen-
dence presented above, here we must also account for the
contribution of the negative-energy solution of the high en-
ergy excitation branch. That is, the energy E1−�k ,A� at wave
vectors near the Fermi surface of the metallic layer �layer 2�
and E2−�k ,A� near the nodes of the underdoped layer �layer
1�.

Thus, the contributions to the superfluid stiffness from the
wave vectors near the Fermi surfaces of the two layers are
given by

���0� = �
k����



1� + 
2� +
d2E�̄−

dA2 + �K�
eff	0� . �25�

Here the two layers are denoted by �=1,2 while �̄=2,1
denotes the other layer. K�

eff are given in Eqs. �18� and �20�,
and �. . .	0 denotes a ground-state expectation value. Using
the same procedure as outlined in Sec. IV B but applied to
the large negative-energy solutions, we get

d2E�−�A�
dA2 � −


�

E�


�� −
t̃�
2

E�
3 �J1 − J2�2. �26�

Finally, using Eqs. �25� and �26�, and interpolating to all
wave vectors we obtain the correction to the zero-
temperature stiffness of order �t̃� /E��2

���0� � − ��1vF1 − �2vF2�2�
k

2t̃�
2 sin2 kx

�E1k + �
2k��3

��1 −

1k
2k

E1k�
2k�� . �27�

This is added of course to the zeroth order stiffness of the
two layers �ns1 /m1

�+ns2 /m2
� �see Eq. �A4��.

To gain better understanding of the zero-temperature para-
magnetic correction and the processes involved, it is worth-
while to derive it from a diagrammatic approach. At second
order in t�, the diamagnetic and paramagnetic corrections to
the superfluid density are given by the following diagrams
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δρdia =

�

K1σ3

1

1

2 +

�

K2σ3

2

2

1

δρpara
1

J1σ0J1σ0

1

2

1 +

2

J2σ0J2σ0

2

1

2 + 2 ×
1

J2σ0J1σ0

1 2

2

= �28�

Here the labels 1 and 2 denote the bare Nambu Green’s func-
tions of the isolated layers 1 and 2, respectively, and a vertex
with a dashed line denotes an interlayer tunneling process. In
adding up the contributions of the paramagnetic bubble dia-
grams above, we directly obtain result �27�. Note that the
first two diagrams describe renormalization of the Green’s
function of each layer due to virtual hopping of electrons out
of it into the other layer. The third diagram is a vertex cor-
rection describing indirect coupling to the vector potential
via hopping to the other layer. The correction to the stiffness
of the same order in t� coming from the diamagnetic dia-
grams is suppressed by a factor of order �k /kF. It can there-
fore be neglected in the case of good Fermi-surface match-
ing.

In the appendix we present a more complete derivation of
result �27� using degenerate perturbation theory. In addition
we show there that the paramagnetic correction behaves as
��1vF1−�2vF2�2 at all orders in t�. The same conclusion also
emerges from the results of the self-consistent mean-field
calculation �described in Sec. III�. Figure 4 shows a qua-
dratic dependence of the zero-temperature stiffness on �J1

−J2� when the effective quasiparticle charge of the under-
doped layer is varied. It is interesting to note the weak de-
pendence of �s�0� on t� at the point J1−J2=0. This arises
from the small diamagnetic term, which we neglected in the
analytic calculation.

The paramagnetic correction at zero temperature can be
used to measure the current carried by a quasiparticle and
specifically its doping dependence. As mentioned above, this
property also comes up in the temperature-dependent stiff-
ness, and its dependence on hole doping has posed a long-
standing puzzle �see, for example, Ref. 17�. Since these mea-
sures of the quasiparticle charge �or current� are model
dependent, it is useful to have an independent probe, such as
the zero-temperature paramagnetic effect in a bilayer.

To define a concrete experiment along these lines it is
simpler to consider a bilayer or heterostructure consisting of
two types of underdoped layers with a small mismatch in
doping �x−y��x ,y. The experiment involves comparison be-
tween the superfluid stiffness measured for the heterostruc-
tures to that of the pure materials. Using the diagrammatic
perturbation theory to second order in the interlayer cou-
pling, we obtain the reduction in the zero-temperature stiff-
ness in the heterostructure:

���0� � − ��1vF1 − �2vF2�2�
k

2t̃�
2 sin2 kx

�E1k + E2k�3

��1 −

1k
2k − �1k�2k

E1kE2k
� . �29�

Note that here the electron operators of both layers are renor-
malized and therefore the effective interlayer coupling is t̃�

=��x���y�t�. The main contribution to the sum in Eq. �29�
is from wave vectors between the underlying Fermi surfaces
of the two layers. Thus in the limit of good Fermi surface
matching between the layers ��k�kF�, we obtain

���0� � −
xy��1 − �2�2

�k2�x,y�
t�
2 kF

vF
, �30�

where we assumed that in the underdoped regime the Fermi
velocity is doping independent and thus vF1=vF2�vF. The
Fermi wave vector depends very weakly on the doping and
we denote by kF the average value of the two layers. In
addition we plugged ��x��x which is valid at low doping
levels. If we assume that �k�x−y �as should be expected
from the Luttinger theorem�, a measurement of the paramag-
netic reduction at T=0 as function of both x and y can reveal
the doping dependence of the effective quasiparticle charge
� in the underdoped regime. Such a measurement will dis-
tinguish between the following scenarios: �i� ��x�=� inde-
pendent of doping, in which case there will be no paramag-
netic reduction. Note that the small diamagnetic correction
that will survive in this case is positive and therefore cannot
be mistaken with the paramagnetic correction. �ii� ��x��x as
implied by slave boson mean-field theory, which will result
in a finite paramagnetic reduction that scales as x2 to leading
order in y-x. �iii� ��x� has some other doping dependence,
leading to a more involved doping dependence of the para-
magnetic response. In general, if ��x� depends on the doping
as x� ���0�, then the leading doping dependence of the
paramagnetic reduction is x2�.

V. SUMMARY

In this paper we showed that significant enhancement of
Tc in cuprate heterostructures is possible under realistic con-
ditions and provided a possible explanation for recent mea-
surements on LSCO bilayers by Yuli et al.10 Our analysis

ENHANCEMENT OF THE SUPERCONDUCTING TRANSITION… PHYSICAL REVIEW B 79, 174509 �2009�

174509-9



indicates that the conditions under which such enhancement
of Tc can occur depend crucially on the evolution of the
superconducting state with underdoping on approaching the
Mott insulator. In particular, the effect is sensitive to the way
in which the phase stiffness and the current carried by qua-
siparticles are renormalized as a function of the doping level.
Such questions, pertaining to the fundamental nature of su-
perconductivity in the cuprates, are not yet fully resolved,
and we proposed that further experiments with cuprate het-
erostructures can further illuminate these issues.

The essential idea of Tc enhancement in heterostructures5

is based on the observation that the pairing scale in the un-
derdoped cuprates is high, and Tc is limited by the low su-
perfluid density in these materials.1,2 By inducing a proxim-
ity gap in a nearby metallic layer, the large density of charge
carriers in that layer is harnessed to the total superfluid re-
sponse. However because the proximity gap is typically
much smaller than the original gap, the reduction in the su-
perfluid density with temperature is also much steeper in the
heterostructure. Consequently, the question whether Tc can in
fact be enhanced in this way is more delicate, and sensitive
to the nature of superconductivity in the underdoped mate-
rial.

To address this question we used a microscopic approach
based on the slave Boson mean-field theory, as well as a
semiphenomenological theory of the doped Mott insulator.
Straightforward slave boson mean-field theory showed no
enhancement of Tc in the bilayer. Interestingly however, this
failure is directly tied to the well-known shortcoming of the
mean-field theory in describing the temperature-dependent
phase stiffness �see, e.g., Ref. 17�. One can generalize the
low energy theory derived from the microscopic approach to
include renormalized parameters for the zero-temperature
stiffness and the effective charge of a quasiparticle such that
it reproduces the observed response in bulk samples.13 Using
such a phenomenological theory for the bilayer we found
that Tc enhancement can be achieved for interlayer tunneling
of order t /5 or larger. This value is in excess of the bare
interlayer tunneling in LSCO bilayers, such as those investi-
gated in Ref. 10. We proposed that this discrepancy may be
resolved if each of the layers at the interface is in fact an
inhomogeneous mixture of underdoped and overdoped mate-
rials �e.g., as a result of dopant migration�. In this case our
bilayer model with moderate coupling t�� t /5 can be
viewed as a crude effective description of the inhomoge-
neous interface.

We note that the analysis performed in this paper uses a
completely homogeneous model. It does not include, for ex-
ample, stripe or density-wave structures. The existence of
such structures therefore does not appear to be crucial for
obtaining an enhanced Tc. From this point of view the fact
that the maximal enhancement seen in Ref. 10 was close to
1/8 may be coincidental.

Finally, we pointed out a unique paramagnetic contribu-
tion to the zero-temperature phase stiffness of a bilayer sys-
tem. The paramagnetic reduction in the zero-temperature
stiffness is proportional to t�

2 and to �J1−J2�2, that is, the
square of the difference of electric current carried by a qua-
siparticle on each layer. We proposed that experiments with
bilayers or heterostructures can serve as an alternative probe

of the effective quasiparticle charge and its doping depen-
dence in cuprates.
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APPENDIX: PERTURBATION THEORY IN THE
INTERLAYER COUPLING

Here we use straightforward perturbation theory of Eq.
�6� in the interlayer tunneling to compute the zero-
temperature stiffness of the bilayer. This is an alternative to
the effective Hamiltonian approach used in Sec. IV D to ob-
tain the zero-temperature stiffness and provides a check of
the results. The expansion is separated into different regions
in the Brillouin zone where different sets of levels may be
nearly degenerate. For example, we describe the expansion
for wave vectors near the Fermi surface of the metallic layer
�layer 2�. The �non-normalized� eigenvectors of Eq. �6� cor-
rected to first order in t� /E1 and to lowest order in E2 /E1 are
given by

�1	 = �u v
t̃�

E1
u −

t̃�

E1
v �T

,

�2	 = �− v u
t̃�

E1
v

t̃�

E1
u �T

,

�3	 = � t̃�

E1
f1 −

t̃�

E1
f2 ū v̄ �T

,

�4	 = � t̃�

E1
f2

t̃�

E1
f1 − v̄ ū �T

. �A1�

Note that the subscripts k of E1, u, and v are suppressed
for notational simplicity. Here u= ��1+
1 /E1� /2�1/2,

v= ��1−
1 /E1� /2�1/2, ū= ��1+ 
̃2 /E2� /2�1/2, and v̄= ��1
− 
̃2 /E2� /2�1/2, where 
̃2=
2−
1t̃�

2 /E1
2 and E2= �
̃2

2

+�2t̃�
4 /E1

4�1/2. In addition we denote f1�2uvv̄− �u2−v2�ū
and f2�2uvū+ �u2−v2�v̄.

These states can now be used to compute the response to
an external vector potential coupled to Hamiltonian �5�,

HMF�A� = �
k

1

2
�
1k� + 
2k� �A2 + �k

†hk�A��k� ,

where

hk�A� = hk�0� − ĴA +
1

2
K̂A2, �A2�

with hk�0� given by Eq. �6� and
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Ĵ = �J1�0 0

0 J2�0
� K̂ = �
1��3 0

0 
2��3
� . �A3�

In particular the diamagnetic response at T=0 includes
the first-order correction to the ground-state energy in the
quadratic coupling term,

�dia = �
k

�
1k� + 
2k� + �2�K̂�2	 + �4�K̂�4	�

� �
k


1k� �1 −


1k

E1k
� + 
2k� �1 −


2k

�
2k���
+ �

k

t̃�
2

E1k
2 

1k� � 
1k

E1k
−


2k

�
2k�
�
1k

2 − �1k
2 �

E1k
2 �

− 
2k� � 
1k

E1k
−


2k

�
2k��� . �A4�

The zero-temperature paramagnetic contribution is given
by the second-order perturbation theory in the linear cou-
pling term:

�para � − 2�
k

 ��2�Ĵ�3	�2

E1k + �
2k�
+

��4�Ĵ�1	�2

E1k + �
2k�
�

= − 2��1vF1 − �2vF2�2�
k

t̃�
2 sin2 kx

�E1k + �
2k��3�1 −

1k
2k

E1k�
2k�
� .

�A5�

The perturbative corrections to the zero-temperature stiffness

to order �2� t̃�
2 /E1k

2 consist of two contributions. The dia-
magnetic contribution, proportional to 2t�2 �with t= t1= t2�,
and the paramagnetic contribution, proportional to
2�2t�2�2 /E1, and thus larger by a factor of �4t /E1�kF /�k
��k is the Fermi-surface mismatch of the two layers�. This
consideration allowed us to keep only the perturbative terms
��J1−J2�2 in the derivation of the effective Hamiltonians of
Eqs. �17� and �19�.

The zero-temperature paramagnetic response scales as
�J1−J2�2 to all orders in t�. To see this we denote the exact
set of four eigenvectors of Hamiltonian �6� by ��n	� and their

corresponding energies by En. We note that the matrix Ĵ can
be rewritten as �J1−J2��̃+J2I, where I is the 4�4 unit ma-
trix and

�̃ = ��0 0

0 0
� . �A6�

The paramagnetic response is given by the second-order cor-
rection of the ground-state energy in the presence of an ex-
ternal field �as in Eq. �A5��, and thus involves only off-

diagonal matrix elements of Ĵ in the basis ��n	�. As a result,
matrix elements of J2I vanish due to orthogonality of the
eigenvectors and we are left with

��para = 2�
k

�J1 − J2�2 �
n�neg

m�n

��n��̃�m	�2

En − Em
, �A7�

where n�neg denotes the negative-energy eigenstates.
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